
Computer Science

HideM: Protecting the Contents of

Userspace Memory in the Face of

Disclosure Vulnerabilities

Jason Gionta, William Enck,

Peng Ning

1

Computer Science
2

JIT-ROP

Computer Science

Two Attack Categories

3

• Injection Attacks
– Code Integrity

– Data Execution Prevention

• Code-Reuse Attacks

Computer Science

Code-Reuse Attacks – Simple ROP

4

Stack

Executable

Memory

xor rax, rax
ret

add $0x1, rcx
ret

lea rbx, [rsp+8]
ret

0x0FF

0x0CC

0x0BB

0x0AA

0x000

0x0CC

0x0BB

0x0AA

Overwritten

Return Address

V
u
l
n
e
r
a
b
l
e

B
u
f
f
e
r

What an attacker knows?

• Buffer overflow

• Static binary load location

• Static location of gadgets

“buffer overflow”
ret 0x011

Computer Science

Code-Reuse Attacks – Break ROP

5

Stack

Executable

Memory

xor rax, rax
ret

add $0x1, rcx
ret

lea rbx, [rsp+8]
ret

0x4FF

0x4CC

0x4BB

0x4AA

0x400

0x0CC

0x0BB

0x0AA

Overwritten

Return Address

V
u
l
n
e
r
a
b
l
e

B
u
f
f
e
r

Protection: ASLR

What an attacker knows?

• Buffer overflow

• Static binary load location

• Static location of gadgets

“buffer overflow”
ret

S
eg

F
a
u

lt

Computer Science

Code-Reuse Attacks – ASLR Bypass ROP

6

Stack

Executable

Memory

xor rax, rax
ret

add $0x1, rcx
ret

lea rbx, [rsp+8]
ret

0x4FF

0x4CC

0x4BB

0x4AA

0x400

0x0CC

0x0BB

0x0AA

Overwritten

Return Address

V
u
l
n
e
r
a
b
l
e

B
u
f
f
e
r

What an attacker knows?

• Buffer overflow

• Static binary load location

• Static location of gadgets

• Return address leak

“buffer overflow”
ret

call print_stack

0x433

0x433

0x4CC

0x4BB

0x4AA

Protection: ASLR

Computer Science

Code-Reuse Attacks – Break ROP (Again)

7

Stack

Executable

Memory

xor rax, rax
ret

add $0x1, rcx
ret

lea rbx, [rsp+8]
ret

0x4FF

0x4CC

0x4BB

0x4AA

0x400

0x???

0x???

0x???

Overwritten

Return Address

V
u
l
n
e
r
a
b
l
e

B
u
f
f
e
r

Protection: Fine-Grained

 ASLR

What an attacker knows?

• Buffer overflow

• Static binary load location

• Static location of gadgets

• Return address leak

“buffer overflow”
ret

call print_stack

0x433

0x433

Computer Science

Code-Reuse Attacks – ROP + Disclosure

8

Stack

Executable

Memory

xor rax, rax
ret

add $0x1, rcx
ret

lea rbx, [rsp+8]
ret

0x4FF

0x4CC

0x4BB

0x4AA

0x400

0x???

0x???

0x???

Overwritten

Return Address

V
u
l
n
e
r
a
b
l
e

B
u
f
f
e
r

Protection: Fine-Grained

 ASLR

What an attacker knows?

• Buffer overflow

• Static binary load location

• Static location of gadgets

• Return address leak

• Code Disclosure

“buffer overflow”
ret

call print_stack

0x433

0x433

0x4BB

0x4CF

0x430

Computer Science

Memory Disclosure Vulnerabilities

• Leak raw memory contents

• Used for bypassing modern protections
– ASLR - Pwn2Own2013, Pwn2Own2014

– Fine-grained ASLR - Just-In-Time Code Reuse [Snow et al. 2013]

– CFI - Out-of-Control: Overcoming Control Flow Integrity [Gotkas et al. 2014]

• Disclosure Protections
– XnR – [Backes et al. 2014]

• Limit code reads so small set of memory

• Does not handle legitimate reads

• Heuristic based detection

• Observation: commodity systems lack of fine-
grained read permissions

9

Computer Science

HideM: Protect Userspace Code from Disclosure

• Assumption: Fine-Grained ASLR Deployed

• Enable fine-grained read permissions on

executable memory

– Prevent the majority of code from being read

• Enforce permissions seamlessly on

Commercial-Off-The-Shelf (COTS) binaries

• Target commodity systems to ease adoption

• GOAL: Unreliable exploitation

– Adversary must guess contents of code

10

Computer Science

Challenges

• Execute permissions imply read permissions

– A present userspace page can always be read

– Solution: apply code hiding to differentiate memory
access based on CPU operation

• Executable pages often contain read-only data

– Allow legitimate reads of executable-pages

– Solution: generate and apply code reading policy per
executable page

• Protecting COTS binaries without symbols

– Solution: light-weight binary analysis to identify data
embedded in code pages

11

Computer Science

Code Hiding: Primitive

• Enables execute-only permissions on memory

– Access based on CPU operation

• Based on PaX and advanced rootkit hiding

• Leverage split TLB architecture

Process
Memory

Code Page

pushl %ebp
movl %esp, %ebp
subl $8, %esp

00000000000000
00000000000000
00000000000000

execute

read

12

Computer Science

Fine-grained Read Permissions

• Generate and enforce code reading policy
– Identify read data in code prior to execution

– Embed as part of COTS binary

• Associate binary data locations with load time memory

• Apply code reading policy per page

Pre-execution Execution

Legacy/COTS
Binary

Symbol
+

Data
Analysis

Legacy/COTS
Binary

Data
Locations

+

Load
Binary

Policy
Generation

Page
Fault

Data
Locations

Read Policy Apply
Policy

Is Hidden
Page?

yes

no
Continue
execution

Load
Information

13

Computer Science

Identifying Data in Code - Types

• Two types of data read in code pages

– DT-1: read-only data never executed

– DT-2: executed data that needs to be read

• Provide DT-1 and DT-2 ranges with binary

14

Computer Science

Identifying Data in Code – How to Identify

• DT-1: read-only data never executed

– Binary structure

– Recursive disassembly to identify ICF targets

• Based on Zhang and Sekar [Usenix Sec’13]

• Identify jump-tables

• Disassembly errors identify gaps (unknown regions)

• DT-2: executed data that needs to be read

– Binary analysis – identify DT-2

• Immediate values that result in a valid code address

• Instruction pointer relative values

15

Computer Science

Applying Read Policy

• All HideM protected pages have userspace access
denied by default

• Generate shadow read page based on policy
– First page fault copy DT-1 and DT-2 to read page

– Remove DT-1 from code page

• Apply shadow page with code hiding
– Prime TLB

Userspace Kernel Hardware
Process

Code Page

0x00000000

0xFFFFFFFF

0x00040000
Page
Fault

Protected
0x00041000

Prime TLBaccess
Physical
Address

Virtual
Address

ITLB
0x40000 0x00001000

DTLB

0x40000 0x00004000

execute

read

pushl %ebp
movl %esp, %ebp
subl $8, %esp

0000004FC3000000000
000000000000FFFF9200
000FFFF0434000000000

16

Computer Science

Hardening Against ROP Exploits

• Readable pages contain DT-2 data

• Adversary can build exploits from only DT-2
– Limited to 4 bytes in length

• Identifiable by ROP Runtime Protections

• Add noise to readable pages in place of non-read
code
– Mimics DT-2 data

17

0000004FC3000000000
000000000000FFFF9200
000FFFF0434000000000

3F00004FC3FFFF2CB09E
EFFFF3D172DFFFF92005
DFFFF04340000F700341

Computer Science

Empirical Evaluation

• Implementation of HideM

– Linux kernel 3.10.12

• Intel x86 64-bit

– Dynamic library loading support

• glib 2.18

• Platform

– IBM LS22 blade server

• Two Quad-Core AMD Operton 2384 processors

• 32GB of RAM

• 1024 4KB page TLB entries per core

– Ubuntu 12.04.4 LTS 64-bit

18

Computer Science

Empirical Evaluation: Application Set

• 28 applications and required shared libraries
converted to HideM

– 442 total binaries converted / 441 MB

– 13 binaries required manual analysis of data in code

• 9 non-trivial applications

– Wireshark, dumpcap, gimp, gedit, lynx, python, emacs,
lynx, smplayer

• 19 SpecCPU 2006 applications

– Perlbench, bzip2, gcc, mcf, gobmk, hmmer, sjeng,
libquantum, h264ref, omnetop, astar, xalancbmk, milc,
namd, dealII, soplex, povray,lbm, sphinx3

19

Computer Science

Empirical Evaluation: Performance

• Runtime overhead: Percent increase in runtime

– Maximum: 6.5% increase; Minimum: 2% decrease

– Average 1.49%, median 0.51%

20

Computer Science

Empirical Evaluation: Security Evaluation

• Model the probability of exploitation based on

knowledge of HideM

– Adversaries dump memory and search for gadgets

– Identify unique gadgets required for exploit

– Choose a location for each unique required gadget

• Duplicate gadgets at different locations

21

Computer Science

Empirical Evaluation: Security Evaluation

• Probability of exploitation against HideM

– Based on “Unordered sampling without replacement”

• N gadgets for an exploit

• Ug total unique gadgets

• Uvg number of unique valid gadgets

• Svg number of valid unique gadgets for a specific gadget

• Sg total number of gadgets for a specific valid unique gadget

22

Computer Science

Empirical Evaluation: Security Evaluation

•

23

Computer Science

Empirical Evaluation: Security Evaluation

• Use two tools to find ROP gadgets in memory

– ROPGadget

– RP++

• Gadgets limited to 4 bytes in length

• Calculate probability of exploitation for tested

binaries given N=1

– Only one valid gadget required to exploit

24

Computer Science

Empirical Evaluation: Security Evaluation

• 5 highest and lowest exploit probability (N=1)

25

Before HideM After HideM Distribution Guessing

Computer Science

Empirical Evaluation: Security Evaluation

• 10 highest exploit probability

• Gadgets limited to 4 bytes

26

Computer Science

Conclusion

• HideM provides protection against code disclosure

– Hides codes from being read

– Applies code reading policy to enable selective fine-grained

reads of code

• Supports C++ exception handling

• Supports COTS binaries

– Identifies data locations through offline static analysis,

minimal manual verification

• Existing systems can be retrofitted for protection

• Limited impact on performance

27

Computer Science

Thanks

• Questions?

 jjgionta@ncsu.edu

 gionta.org

28

